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A method has been derived which enables one to obtain ~o~lutions to the 
stationary, axially symmetric vacuum fields in general projective relativity 
developed by Arcidiacono from known solutions of the vacuum field in Einstein's 
theory. The analogue of the Kerr solution in general projective relativity has 
been obtained as an example. Finally, a relation between the stationary and 
static axially symmetric vacuum fields in general projective relativity has been 
derived. 

1. I N T R O D U C T I O N  

Recently Arc id iacono (1984, 1986, 1987) has developed a general 
projective relativity (GPR)  based on the DeSitter Universe with the local 
curvature described by the generalized Einstein equations 

RAB--I~ABR=XTAB, (A, B = 0 ,  1, 2, 3, 4) (1.1) 

where ")lAB iS the 5-dimensional  metric and TAB is the energy tensor  o f  the 
material fields (Arcidiacono,  1986). From the field equations (1.1), a good  
number  o f  alternative theories o f  gravitation and unified field theories can 
be obtained.  In particular,  the field equations for a scalar-tensor gravitational 
field have been obtained which have a formal similarity with the Brans-  
Dicke scalar-tensor theory (Brans and Dicke, 1961; Singh and Rai, 1983; 
Singh and Singh, 1987). 

The field equations o f  G P R  (Arcidiacono,  1986) can be written as 

Rik -- ~aikR q- (3n + 1)~-l(ViVkq~ - aik[~ (b ) 

-- 3n~b -2[(n + 1) (V~b)(Vk4~) + na~k(Vl~5)(VsqS)a I~ ] 

: Xt h -2 T/k (1.2) 

R +6n[cb-JDgg+(n-1)qS-2(V tc~) (V~cb)a l~]=-2XC~-4Too  (1.3) 
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It has been shown by Arcidiacono (1984, 1986) that given a solution of the 
GPR field equations for n = 0, one can obtain a solution of GPR field 
equations with n r 0 by the transformations 

"Yik = ffo2naik; ~'io = 0 (1.4) 

'~00 = ~ )2 (n+ l )  

and 

T~k --> q~-2n Tik; roo-~ 4~-~~ Too (1.5) 

The quantities with a caret refer to their four-dimensional components;  t, 
k take the values 1, 2, 3, 4; a~k is the metric tensor of the four-dimensional 

�9 ~ i k  A ^ . . . 

space-time. R = a Rik, where Rik ~S the Rlcc~ tensor constructed from the 
tensor a~k. For the vacuum case TAB = 0 (A, B = 0, 1, 2, 3, 4) and if we 
consider n = 0, the field equations (1.2) and (1.3) reduce to 

1 
/~ik + ~  ~b;ik = 0 (1.6) 

[]4, =0 (1.7) 

Here a semicolon denotes covariant derivative in four-dimensional 
space-time. The field equations (1.2), (1.3) and (1.6), (1.7) have a formal 
similarity with the Brans-Dicke theory (Brans and Dicke, 1961; Singh and 
Rai, 1983; Singh and Singh, 1987). 

In an earlier paper  Arcidiacono and Singh (submitted) have shown 
that a Birkhoff-type theorem of general relativity is true in GPR also under 
the assumption that the scalar field is independent of  time r 

In this paper  we consider the vacuum field equations of  GPR in the 
form (1.6) and (1.7) and derive a method which enables one to obtain 
solutions to the stationary, axially symmetric vacuum GPR (with n =0)  
starting from vacuum solutions to the Einstein theory. Further use of the 
transformation (1.4) gives a family of vacuum solutions of GPR for arbitrary 
n. We assume that the tensor field aik and the scalar field r are functions 
of  the space coordinates x 1 and x 2 only. 

The method has been applied to Kerr solutions (Kerr, 1963; Boyer and 
Lindquist, 1967) and the GPR analogues of  Kerr solutions have been 
obtained. The solutions are relevant to the study of black holes in general 
projective relativity. Finally, a relation between stationary and static axially 
symmetric solutions of  G P R  is derived. 
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2. FIELD E Q U A T I O N S  

We consider  a s tat ionary,  axially symmetr ic  space- t ime whose metr ic  
is o f  the fo rm 

ds2= e2U(dt+[~ d~5)2-e 2K 2U[(dxl)2+(dx2)2]-h2e-2U(d4)) 2 (2.1) 

where  U, fL  K, and h are funct ions of  x 1 and x 2 only. 
For  the metr ic  (2.1) the surviving equat ions  f rom the G P R  field 

equat ions  (with n = 0), namely  (1.6) and (1.7), are 

e 4U 
2 ( U ~ -  U2)Jr 2Klh'  2K2h2 F 2 2 

h h 2h -5 (fz~ - D'2) 

+ h  (h22-  hll) + (P22-P11) (p2 ~ ~ p ~ ~ + 

+ 2 p l ( K  1 - U1) - 2p i (K  2 - U2) = 0 (2.2) 

K2hl Klh2 f Z l D . 2 e 4 U + ~ + p i z  
2 U~ U2 h h 2h z 

+ P~P2 -p~( K2 - U2) -p2( g~ - Ul) = 0 (2.3) 

1 
~')ll+~22--~(a,h,+~Q2h2)+4(U,~-~,+ u2a2)+(a ,p l+a2p2)=o (2.4) 

, + Sl,+ g22+~(Ulhl+ S2h2)+ (n,~+a~)e"U+ U,p,+ U2p2=0 (2.5) 
2 

hll + h22+ hip1 + h2p2 = 0 (2.6) 

2 2 1 
P,1 +P22+Pl  + P 2 + ~  (h,pl + h2P2) = 0 (2.7) 

where e ' =  & and subscripts  1 and 2 denote  part ial  differentiation with 
respect  to x ~ and x 2, respectively.  

3. S O L U T I O N S  O F  T H E  A X I S Y M M E T R I C  S T A T I O N A R Y  
E I N S T E I N  V A C U U M  F I E L D S  

Let us consider  the Einstein vacuum field equat ions cor responding  to 
the metr ic  

ds 2= e2V(dt+~ dqb)~-eZK-2V[(dxl)2+(dx2)2]H2e-2V(d~b) 2 (3.1) 
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where f~ and K are the same as those given in (2.1) and H and V are 
funct ions of  x 1 and x2; the set o f  field equat ions f rom the Einstein vacuum 
field equat ions Rij = 0 cor responding  to the metric  (3.1) are 

2KIH1 2K2H2 e 4v 1 
2(V22- vR)-t H H ~- 2H2 ( f~2-  f~2) + "'r~ ( H 2 2 -  H , , )  = 0 (3.2) 

2 V1 V2 K2H1 K1 H2 e~V _--zz-_H12 
H H 2H2 f ~ t f l 2 + H  = 0  (3.3) 

1 
~11+~22- -~ (~IHl+~2H2)+4(V l~ ,+  V2~2)=0 (3.4) 

e 4U 
Vl,q-V22q--~(V, Hl+ V2H2)q--~-~(~-~q-a2)-=O (3.5) 

H,~ +/ /22  = 0 (3.6) 

From (2.6) and (2.7), it can be found that  

(heP)ll q- (heP)22 = 0 (3.7) 

Equat ions  (3.6) and (3.7) suggest the relat ion 

H = he p (3.8) 

In view of  (3.8) and the substi tut ion 

V=-- U+�89 

the set o f  equat ions  (3.2)-(3.6) reduces to 

2( U2_ U2)4 2Klhl 2K2h2 e aU 2 2 2 
h h ~-2h 2 (~'~1--a2) 

1 h 2 q--~( 22-h l l )q- (P22-Pl l )+3(p~-pl )  

2 
+ 2p,(K1 - U1) -2p2(K2 - U2) --s ( h , p i -  hzp2) = 0 

K2hl Klh2 e4O hi2 3 
2U1U2 h h 2h 2 ~1~2+-s p~P2 

(3.9) 

- (K2 - U2)p~ - ( K 1 -  UOpe+ 1 (h~p, + hzp2) = 0 (3.10) 

~Q11 q" ~)-~22 - h(~'~l hi --I- D.2h2) -t-- 4(~~ 1 U 1 + ~Q2 U2) -t-- (Chp~ + f)~2P2) '= 0 (3.11) 
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1 e 4U 
gll  + U22 -+-~ ( U, hl-k- g2h2) + ~ 5  (l)~ + f~) 

+ ~ [ P l l + P 2 ~ + p 2 + p 2 + h  (h~p,+h2p2) ] 

+ ( Ulp~ + U2p2) = 0 (3.12) 
2 2 h11+hz2+2(hlp~+h2p2)+h(pll+p22+pl+p2)=O (3.13) 

On comparing equations (3.9)-(3.12) with (2.4)-(2.7), we observe that they 
are equivalent if the following relations hold: 

2 2 4 
P2 - P~ = - ~  ( h2p2 - hlp~) (3.14) 

1 t + 5PIP2 ~ (hlpl + h2p2) = 0 (3.15) 

2 
pl~+P22+p~+p2+ (hlp~+h2P2)=O (3.16) 

Equation (3.13) together with (3.16) is equivalent to the set of equations 
(2.6) and (2.7). Hence the set of equations (3.9)-(3.13) along with (3.16) is 
equivalent to the set of equations (2.2)-(2.7) provided the conditions (3.14) 
and (3.15) are satisfied. Therefore, in GPR, vacuum axisymmetric stationary 
solutions are obtainable from the Einstein vacuum axisymmetric stationary 
solutions when the relations (3.14) and (3.15) are satisfied. 

Now equations (3.14) and (3.15) give the relation between p and h as 

p = - 4  log h 

Thus, finally p and h are known in terms of H. Hence we have established 
the result. 

Theorem 1. Given any Einstein vacuum axisymmetric stationary solu- 
tion (Ue, f~E, Ke, HE), one can generate a corresponding GPR (with n = 0) 
vacuum axisymmetric stationary solution (UopR, flcPR, KGpR, HGpR, 05), 
where 

UcpR = UE-�89 log ~b 

f~GpR = ~E 

KGPR = Kz (3.17) 

H G p  R = H E  1/3 

4) = H 4/3 

Hence we have the result for GPR vacuum fields with n ~ O. 
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Theorem 2. For every vacuum solution of GPR with n = 0 given by 
(3.17) we have a corresponding family of vacuum solutions of GPR with 
n ~ 0 given by 

2n 
~lik = if) aik, Ti0 -=- 0 

~/00 = ~ 2 ( n + l )  i, k = 1, 2, 3, 4 
(3.18) 

where aik is the four-dimensional metric tensor given by (2.1). 

4. ANALOGUE OF KERR SOLUTION IN GENERAL 
PROJECTIVE RELATIVITY 

The Kerr metric is given by (Kerr, 1963; Boyer and Lindquist, 1967) 

d r  2 ) 
d s  2 = _ ( r 2 +  a 2 cos20) r 2 2 m r +  a 2 + dO 2 - ( r 2 +  a 2) sin20 d ~  2 

2 m r  
+ d t  2 -  r2 + a2 c0s20 (d t+ a s in20 dq~) 2 (4.1) 

If we use a coordinate transformation similar to the one used by Mishra 
and Pandey (1972), we can write the metric (4.1) in the form 

d s  2 _ 
L 2 +  a 2 cos  2 0  - 2 m L  

L 2 +  a 2 cos  2 0 
dt 2 -  (L2+ a 2 cos20)[(dx')2+ (dx2) 2] 

2mLa 2 sin40 ] 
- [ (L2+ a 2) sin20 4 L2 + a2 cos20 j d~ 2 

4mLa sin20 
L2 q- a2 COS20 dt do5 (4.2) 

where 

L = e R + rn + [(rn 2 -  a2)/4]e -R 

and coordinates r and R are related through 

m 2 _ a  2 
r = R + m + - -  

4R 
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In view of Theorem 1, the GPR vacuum solution (for n = 0) for the metric 
(4.2) is given by 

L2 + a2 cos20- 2mL 
ds 2 -  -L~-+-a~G~o (L-+a2-2mL)-2/3sin-4/30 

2 m L a  sin20 dq5 
x d t  E 2 + a 2 c o s 2 0 _ 2 m L  

- ( L 2 +  a 2 - 2 m L )  2/3 sin4/30 (L2+ a 2 c o s 2 0 ) ( d 0 2 +  d R  2) 

_ ( L 2 q _ a  2 _  1/3 �9 2"3 (L2+a2cOs2~b)  2 
2 r n L )  s,n / 0 L2+a~co---s2-~2--~L do~ (4.3) 

with 

d> = ( L 2 + a 2 _ 2 m L  ) 2 / 3  sin4/3 0 (4.4) 

Hence the stationary axially symmetric vacuum solution of GPR (with 
n ~ 0) can be directly written by applying Theorem 2 to (4.3) with cb given 
by (4.4). (We have omitted the explicit expressions for the sake of brevity.) 

5. STATIONARY AXISYMMETRIC GPR SOLUTIONS FROM 
STATIC AXISYMMETRIC GPR FIELDS 

In this section we show that in GPR (with n = 0) the set of equations 
(2.2)-(2.7) can be reduced to the set of vacuum axisymmetric static field 
equations 

We consider an auxiliary func t ion / i  given by 

e -2U = Ae  p cosh 2s (5.1) 

and define relations between f~ and I2 as 

f l l  = - 2 A h e P E , 2  

f~2 = 2 A h e P f ,  l (5.2) 

where A is any arbitrary constant. With the help of (5.1) and (5.2), equation 
(2.4) is identically satisfied and equations (2.2), (2.3), and (2.5) reduce to 

-2 -2  2 X l h l  2X~h2 1 
- ? - s  2(L2-L0-F  h h 

2 2 + 2(x1 - s  - 2 ( x 2  - L)p2  + (p2 - p,)  = 0 (5.3) 

Xlh2 X2hl hi2 
2LIL2 h h 4-h+P'P2+p12-(X1-E')P2-(X2-E2)Pl=O-- (5.4) 
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and 

- 1 
/711 q- L 2 2  q- h (/7, h, + s + ( s  + / 7 2 P 2 )  = 0 (5.5) 

respectively, where 

-- 1 
L1 + ~Pl 

Xt = K1 + 
p l + h J h  pl 

(5.6) 
-- l 
L2 + aP2 

X2 = Kx + - -  P2 -i- h2/ h P2 

when the scalar 4} = e p satisfies 

&2hl = q~lh2 (5.7) 

If (5.7) holds, the integrability conditions for equation (5.6) require 
that the scalar 4) satisfies 

s = s (5.8) 

Until now equations (2.6) and (2.7) have been unaffected. Hence with (5.7) 
and (5.8) satisfied, equations (5.3)-(5.6) along with (2.6) and (2.7) now 
constitute the set of GPR vacuum axisymmetric static field equations corre- 
sponding to the metric 

ds 2 = e2g(dt)  2 -  e2X-2C[(dxl )2+ (dx2) 2] -- h2e-2s 2 (5,9) 

Hence we have the following result in GPR. 

Theorem 3. Given any axisymmetric, static GPR (with n = 0) vacuum 
solution (/7, X,  h, oh) with the scalar ~ satisfying (5.7) and (5.8), one can 
obtain the axisymmetric, stationary GPR (with n = 0 )  solution 
( U, fZ, K,  h, 05) with the same scalar field 4~. The functions U, ~,  and K in 
GPR are determined, respectively, from equations (5.1), (5.2), and (5.6). 

Now applying the conformal transformation 

2n 
Tik = C~ aik, Tio=O 

(5.10) 
Yoo = ~2(n+l), i, k = 1, 2, 3, 4 

one can obtain the corresponding solutions of GPR field equations with 
n # 0 .  

6. CONCLUSION 

The immediate utility of the theorems proved in this paper is that 
starting from any stationary, axially symmetric solution of Einstein's vacuum 
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equations it is possible to generate solutions to the vacuum equations of 
general projective relativity with n = 0  and then, through a conformal 
transformation, for general projective relativity with n ~ 0. Application of 
Theorems 1 and 2 to the Tomimatsu-Sato solutions (Tomimatsu and Sato, 
1972, 1973) results in a class of  solutions of general projective relativity 
with parameters describing mass m, rotation a, deformation 6, and scalar 
field 4~. Further, it is expected that the solutions obtained in this paper may 
be relevant to the study of black holes in general projective relativity. 
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